Interactive Realizers and Monads
نویسندگان
چکیده
We propose a realizability interpretation of a system for quantier free arithmetic which is equivalent to the fragment of classical arithmetic without nested quantiers, called here EM1-arithmetic. We interpret classical proofs as interactive learning strategies, namely as processes going through several stages of knowledge and learning by interacting with the “environment” and with each other. We give a categorical presentation of the interpretation through the construction of two suitable monads.
منابع مشابه
A Monadic Framework for Interactive Realizability
We give a new presentation of interactive realizability with a more explicit syntax. Interactive realizability is a realizability semantics that extends the Curry-Howard correspondence to (sub-)classical logic, more precisely to first-order intuitionistic arithmetic (Heyting Arithmetic) extended by the law of the excluded middle restricted to simply existential formulas, a system motivated by i...
متن کاملInteractive Realizability, Monads and Witness Extraction
In this dissertation we collect some results about “interactive realizability”, a realizability semantics that extends the Brouwer-Heyting-Kolmogorov interpretation to (sub-)classical logic, more precisely to first-order intuitionistic arithmetic (Heyting Arithmetic, HA) extended by the law of the excluded middle restricted to Σ1 formulas (EM1), a system motivated by its interest in proof minin...
متن کاملInteractive Realizability for second-order Heyting arithmetic with EM1 and SK1
We introduce a classical realizability semantics based on interactive learning for full second-order Heyting Arithmetic with excluded middle and Skolem axioms over Σ1-formulas. Realizers are written in a classical version of Girard’s System F. Since the usual computability semantics does not apply to such a system, we introduce a constructive forcing/computability semantics: though realizers ar...
متن کاملNon-monotonic Pre-fix Points and Learning
We consider the problem of finding pre-fixed points of interactive realizers over arbitrary knowledge spaces, obtaining a relative recursive procedure. Knowledge spaces and interactive realizers are an abstract setting to represent learning processes, that can interpret non-constructive proofs. Atomic pieces of information of a knowledge space are stratified into levels, and evaluated into trut...
متن کاملLeibniz’s Monads and Mulla Sadra’s Hierarchy of Being: A Comparative Study
Mulla Sadra and Leibniz, the two philosophers from the East and the West, belong to two different worlds. Though they were unaware of the ideas of each other, their philosophical systems share certain common points that are comparable. Monads constitute the basis of Leibniz's thought and he refers to their features in his various works. On the other side, Mulla Sadra's philosophy is also based ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1005.2907 شماره
صفحات -
تاریخ انتشار 2010